CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

Indice
indice
Introduccion general
1. Nativa (SQL puro)

1.1 Contexto general

1.2 Estructura basica de una consulta nativa

1.3 Variantes de consultas nativas

1.4 Consultas nativas que devuelven entidades

1.5 Consultas nativas que devuelven campos especificos 0 DTOs
Opcion 2 — Devolver una proyeccion basada en interfaz

1.6 Consultas de modificacion nativas (UPDATE, DELETE, INSERT)

1.7 Paginacion y ordenacion con consultas nativas

1.8 Named Native Queries en combinacidon con Repositorios

1.8 Resumiendo

2. Consultas JPQL en Spring Data JPA

2.1 Introduccion a JPQL

2.2. Sintaxis basica de JPQL

2.3 Declaracion en repositorios Spring Data JPA
2.4 Uso de parametros

2.5 Proyecciones y seleccion parcial

2.6 Consultas con joins y relaciones

2.7. Funciones y agregaciones

2.8. Ordenacién y paginacion

2.9 Buenas practicas

3. Consultas derivadas de métodos (Spring Data JPA / Hibernate)

3.1 Introduccion

3.2 Estructura general del nombre de método
3.3 Operadores mas comunes

3.4 Pardmetros y coincidencia

3.5 Consultas con paginacion y ordenacion

3.6 Contadores y verificadores

3.7 Eliminaciones y actualizaciones automaticas
3.8 Navegacion por relaciones (joins implicitos)
3.9 Ejemplos practicos combinando operadores
3.10 Ventajas y desventajas

O© O & 0 0 1 1 L i i B W W W N =

I e S e e T e T S e S S S e e e O = Sy
o IS e e) tie) o) SO RS O S N NV 2 \S I (S R e i e R)

mailto:ljlopez@fundacionsafa.es

0]

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

CENTRO SAFA NUESTRA SENORA DE LOS REYES

DEPARTAMENTO DE INFORMATICA.

Data JPA

Profesor: Luis Javier Lopez Lopez

Introduccion general

UTS5 - Conexion a base de datos objeto-relacionales usando Spring

En las aplicaciones Java modernas que usan JPA (Java Persistence API) para el acceso a bases de

datos relacionales, una parte fundamental del trabajo consiste en realizar consultas sobre las
entidades del modelo.

Estas consultas permiten recuperar, filtrar, actualizar y eliminar informacion de forma flexible,

manteniendo la abstraccion de la capa de persistencia.

JPA proporciona tres mecanismos principales para definir y ejecutar consultas, cada uno con sus

propias caracteristicas, ventajas y usos recomendados:

Tipo de Consulta | Sintaxis / Cémo se define Ventajas Desventajas Uso recomendado
Nativa (SQL @Query(value = "SELECT [Control total sobre el Dependiente Consultas complejas,
puro) * FROM alumnos WHERE SQL; permite funciones | del motor de optimizadas o especificas
edad > :edad”, especificas del motor; base de datos; del motor
nativeQuery = true) compatible con consultas | menos portable
preexistentes
JPQL (Java @Query("SELECT a FROM Portabilidad entre No todas las Consultas normales sobre
Persistence Alumno a WHERE a.edad motores; trabaja con funciones SQL | entidades y relaciones
Query Language) | > :‘edad”) entidades y atributos; estan
integracion total con disponibles;
Hibernate menos control
sobre
optimizaciones
Consultas List<Alumno> No requiere escribir SQL | Limitado a lo Consultas simples basadas

derivadas de
métodos (Spring
Data JPA)

findAl1lByApellidoEqual
sAndNombreLike(String
apellido, String
nombre) ;

0 JPQL; muy rapido de
implementar; integrado
con repositorios

que permite la
convencion de
nombres;
consultas
complejas
pueden ser
ilegibles

en atributos de la entidad,
filtros combinados y
operaciones comunes

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

1. Nativa (SQL puro)

1.1 Contexto general

En un proyecto que usa Spring Data JPA, cada entidad suele tener un repositorio asociado, por
ejemplo:

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {

}

Spring Data genera automaticamente los métodos basicos (findAll, save, delete, etc.), pero cuando
necesitas consultas personalizadas, puedes usar:

@Query ("SELECT a FROM Alumno a WHERE a.edad > 18")

Eso es JPQL (no SQL real).

Pero si necesitas ejecutar SQL nativo directamente sobre la base de datos, debes indicar a Spring
Data JPA que se trata de una consulta nativa con:

@Query(value = "SELECT * FROM alumnos WHERE edad > 18", nativeQuery =

true)

En ese caso, Hibernate (el proveedor JPA) ejecutara ese SQL directamente sobre la conexion actual
y mapeara el resultado a la entidad correspondiente o al tipo de retorno especificado.

1.2 Estructura basica de una consulta nativa

Ejemplo simple:

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {

@Query(value = "SELECT * FROM alumnos WHERE edad > :edad", nativeQuery = true)

List<Alumno> findAlumnosMayores(@Param("edad") int edad);

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

Explicacion:
e value: contiene la consulta SQL real (no JPQL).
e nativeQuery = true: le indica a Spring Data que la consulta es nativa.
e @Param("edad"): vincula el parametro del método con el del SQL.

e El tipo de retorno (List<Alumno>) debe corresponder con la entidad o un tipo compatible.

Hibernate internamente:

e Preparay ejecuta el SQL directamente sobre la BD.
e Usasu ResultSet interno para mapear el resultado a instancias de Alumno.

e Respeta la transaccionalidad JPA de Spring.

1.3 Variantes de consultas nativas

a) Parametros nombrados

@Query(value = "SELECT * FROM alumnos WHERE apellido = :apellido",
nativeQuery = true)

List<Alumno> findByApellido(@Param("apellido") String apellido);

b) Parametros posicionales

@Query(value = "SELECT * FROM alumnos WHERE edad > ?1", nativeQuery =
true)

List<Alumno> findMayoresQue(int edad);

Hibernate los reemplaza de forma segura (sin riesgo de inyeccion SQL.).

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

1.4 Consultas nativas que devuelven entidades

Cuando el SELECT devuelve todas las columnas que forman la entidad, Spring Data JPA puede
mapear automaticamente el resultado.

@Query(value = "SELECT * FROM alumnos WHERE edad >= :edad", nativeQuery

= true)
List<Alumno> buscarMayoresDe(@Param("edad") int edad);

Importante:
El nombre de las columnas devueltas por el SOL debe coincidir con los nombres de columna

7

mapeados en la entidad (o con los @Column(name = ""columna')).

1.5 Consultas nativas que devuelven campos especificos 0 DTOs

A veces no quieres devolver la entidad completa, sino solo ciertos campos.
Para eso tienes tres opciones.

Opcion 1 — Devolver List<Object[]>

@Query(value = "SELECT nombre, edad FROM alumnos WHERE edad > :edad",
nativeQuery = true)

List<Object[]> findNombresYEdades(@Param("edad") int edad);

Uso:

for (Object[] fila : repo.findNombresYEdades(18)) {
String nombre = (String) fila[@];
int edad = ((Number) fila[1]).intValue();

Opcion 2 — Devolver una proyeccion basada en interfaz

public interface AlumnoResumen {
String getNombre();
int getEdad();

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Y el repositorio:

@Query(value = "SELECT nombre, edad FROM alumnos WHERE edad > :edad",
nativeQuery = true)
List<AlumnoResumen> findResumen(@Param(“edad") int edad);

Hibernate mapeara automaticamente cada columna al método con el mismo nombre (por convencion).
Muy util para reportes o consultas ligeras.

Opcion 3 — Devolver un DTO explicito (Java record o clase)
Spring Data JPA no construye DTOs automaticamente en consultas nativas,
pero puedes usar @SqlResultSetMapping si necesitas hacerlo.

Por ejemplo:

@Entity
@SqlResultSetMapping(
name = "AlumnoDTOMap",
classes = @ConstructorResult(
targetClass = AlumnoDTO.class,
columns = {
@ColumnResult(name "nombre", type = String.class),
@ColumnResult(name = "edad", type = Integer.class)

@NamedNativeQuery(
name = "Alumno.findResumen",
query = "SELECT nombre, edad FROM alumnos WHERE edad > :edad",
resultSetMapping = "AlumnoDTOMap"
)
public class Alumno {
@Id
private Long id;

Y en el repositorio:

@Query(name = "Alumno.findResumen", nativeQuery = true)

List<AlumnoDTO> findResumen(@Param("edad") int edad);

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

1.6 Consultas de modificacion nativas (UPDATE, DELETE, INSERT)

Spring Data JPA también permite ejecutar sentencias nativas que modifican datos,
pero debes marcar el método con @Modifying y, si es necesario, @Transactional.

@Transactional

@Modifying

@Query(value = "UPDATE alumnos SET edad = edad + 1 WHERE edad <
:limite", nativeQuery = true)

int incrementarEdad(@Param("limite") int limite);

e @Transactional: asegura que la operacion esté dentro de una transaccion.
e @Modifying: le indica a Spring que no es un SELECT, sino una operacion de escritura.
e El método devuelve el nimero de filas afectadas.

1.7 Paginacion y ordenacion con consultas nativas

Spring Data permite combinar consultas nativas con Pageable y Sort, siempre que se proporcione un
countQuery para calcular el total.

@Query (
value = "SELECT * FROM alumnos WHERE edad >= :edad",

countQuery = "SELECT count(*) FROM alumnos WHERE edad >= :edad",
nativeQuery = true

)
Page<Alumno> findMayoresDe(@Param("edad") int edad, Pageable pageable);

Uso:

Pageable pageable = PageRequest.of(9, 10, Sort.by("edad").descending());

Page<Alumno> pagina = repo.findMayoresDe(18, pageable);

Hibernate se encarga de ejecutar ambas consultas (SELECT y COUNT) y mapear los resultados.

1.8 Named Native Queries en combinacion con Repositorios

Si defines consultas nativas con @NamedNativeQuery dentro de la entidad,
puedes invocarlas desde el repositorio sin escribir la consulta en la interfaz.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

@NamedNativeQuery(
name = "Alumno.buscarPorApellido”,
query = "SELECT * FROM alumnos WHERE apellido = :apellido",
resultClass = Alumno.class
)
@Entity
public class Alumno {
@Id
private Long id;

Repositorio:

@Query(name = "Alumno.buscarPorApellido", nativeQuery = true)

List<Alumno> findByApellido(@Param("apellido") String apellido);

1.8 Resumiendo

Concepto Descripcion Ejemplo
nativeQuery = true Indica que la consulta usa SQL puro. @Query(value = "SELECT * FROM
alumnos", nativeQuery = true)
Parametros Se vinculan con ?1, ?2 o :nombre. WHERE edad > :edad
Mapeo a entidad Si el SELECT devuelve todas las List<Alumno>

columnas, se puede mapear directamente.

Proyeccion Puedes devolver Object[] o una interfaz List<AlumnoResumen>
de proyeccion.

Actualizacion Usar @Modifying y @Transactional. UPDATE alumnos SET ...

Paginacion Combinar con Pageable y countQuery. Page<Alumno>

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

2. Consultas JPQL en Spring Data JPA

2.1 Introduccion a JPQL

JPQL (Java Persistence Query Language) es un lenguaje de consultas orientado a objetos, que
funciona sobre entidades y atributos de Java, en lugar de sobre tablas y columnas de la base de
datos.

Su sintaxis es similar a SQL, pero con diferencias importantes:

e Seusan nombres de clases y atributos, no nombres de tablas o columnas.
e Devuelve objetos gestionados por JPA, no registros crudos.

e Hibernate traduce JPQL a SQL nativo segin el motor de base de datos usado.

Ejemplo basico:

@Query("SELECT a FROM Alumno a WHERE a.edad > :edad")

List<Alumno> findAlumnosMayores(@Param("edad") int edad);

2.2. Sintaxis basica de JPQL

e Seleccion de entidades completas

SELECT a FROM Alumno a

e Filtros con WHERE

SELECT a FROM Alumno a

e Ordenacion

SELECT a FROM Alumno a ORDER BY a.nombre ASC

e Funciones agregadas

SELECT COUNT(a) FROM Alumno a WHERE a.edad > :edad

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

2.3 Declaracion en repositorios Spring Data JPA

En Spring Data JPA, las consultas JPQL se definen con @Query, sin nativeQuery = true:

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {

@Query("SELECT a FROM Alumno a WHERE a.apellido = :apellido")
List<Alumno> findByApellido(@Param("apellido") String apellido);

e JPQL trabaja con entidades y sus atributos, no columnas.

e Hibernate genera automaticamente el SQL equivalente al motor de base de datos configurado.

2.4 Uso de parametros
JPQL permite parametros nombrados y posicionales:

a) Parametros nombrados

@Query("SELECT a FROM Alumno a WHERE a.nombre LIKE :nombre")
List<Alumno> findByNombrelLike(@Param("nombre") String nombre);

e Mas legible y flexible que los posicionales.

b) Parametros posicionales

@Query("SELECT a FROM Alumno a WHERE a.edad > ?1")

List<Alumno> findMayoresQue(int edad);

e Menos usado que los parametros nombrados en Spring Data JPA.

2.5 Proyecciones y seleccion parcial

Si solo necesitamos ciertos atributos, JPQL permite crear proyecciones:

@Query("SELECT a.nombre, a.edad FROM Alumno a WHERE a.edad > :edad")

List<Object[]> findNombresYEdades(@Param("edad") int edad);

e (Cada elemento de la lista sera un Object[] con las columnas seleccionadas.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Usando DTOs con constructor

public class AlumnoDTO {
private String nombre;
private int edad;

public AlumnoDTO(String nombre, int edad) {
this.nombre = nombre;
this.edad = edad;

@Query("SELECT new com.ejemplo.dto.AlumnoDTO(a.nombre, a.edad) FROM
Alumno a WHERE a.edad > :edad")
List<AlumnoDTO> findDTOByEdad(@Param("edad") int edad);

Ventaja: recibes objetos tipados directamente, evitando Object]].

2.6 Consultas con joins y relaciones

Si Alumno tiene una relacion con Curso:

@Entity

public class Alumno {
@Id
private Long id;

@ManyToOne
private Curso curso;

JPQL permite hacer joins:

@Query("SELECT a FROM Alumno a JOIN a.curso ¢ WHERE c.nombre = :curso"

List<Alumno> findByCurso(@Param("curso") String nombreCurso);

e Hibernate traducira el JOIN a SQL con la clave foranea correspondiente.

e Se puede usar JOIN FETCH para evitar LazylnitializationException al cargar colecciones.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

2.7. Funciones y agregaciones

e COUNT, SUM, AVG, MAX, MIN

@Query("SELECT COUNT(a) FROM Alumno a WHERE a.edad > :edad")

long contarMayores(@Param("edad") int edad);

UPPER, LOWER, CONCAT, LENGTH

@Query("SELECT a FROM Alumno a WHERE UPPER(a.nombre) LIKE

:nombre")
List<Alumno> findByNombreIgnoreCase(@Param("nombre") String

nombre) ;

2.8. Ordenacion y paginacion

Spring Data JPA permite combinar JPQL con Sort y Pageable:

@Query("SELECT a FROM Alumno a WHERE a.edad > :edad")
Page<Alumno> findMayoresDe(@Param("edad") int edad, Pageable pageable);

Uso:

Pageable pageable = PageRequest.of (9, 10,

Sort.by("nombre").ascending());
Page<Alumno> pagina = repo.findMayoresDe(18, pageable);

e Hibernate genera el LIMIT/OFFSET automaticamente segin el motor.

e FElresultado es un Page<Alumno> que incluye total de elementos y total de paginas.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

2.9 Buenas practicas

1. Usar parametros nombrados siempre que sea posible.
2. Usar DTOs con constructor para evitar retornar listas de Object]|].
3. Evitar consultas JPQL demasiado complejas; para eso podrian usar nativas.

4. Recordar que JPQL trabaja con entidades gestionadas, por lo que modificaciones no necesitan
@Modifying.

5. Parajoins, usar JOIN FETCH si se quiere inicializar colecciones relacionadas en la misma
consulta.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

3. Consultas derivadas de métodos (Spring Data JPA / Hibernate)

3.1 Introduccion

Spring Data JPA permite crear consultas automaticas simplemente definiendo el nombre del método
en la interfaz del repositorio.

No hace falta escribir SQL ni usar @Query:
Spring analiza el nombre del método y genera la consulta JPQL correspondiente, que Hibernate luego
traduce a SQL nativo segun el motor de base de datos.

Esto se conoce como Consultas derivadas de método (Derived Query Methods).

Ejemplo basico

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {

List<Alumno> findAllByApellidoEqualsAndNombrelLike(String apellido, String nombre);

Spring Data JPA:

1. Analiza el nombre del método (findAlIByApellidoEqualsAndNombreLike).

Traduce automaticamente a JPQL:

SELECT a FROM Alumno a WHERE a.apellido = :apellido AND a.nombre LIKE :nombre

2. Hibernate ejecuta el SQL equivalente sobre la base de datos.

Resultado: sin escribir ni una linea de SQL o JPQL.

3.2 Estructura general del nombre de método

El formato basico es:

<accién>By<Propiedadl><Operadorl>[And|Or]<Propiedad2><Operador2>...

Donde:

mailto:ljlopez@fundacionsafa.es

-
SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

CENTRO SAFA NUESTRA SENORA DE LOS REYES

DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring

Data JPA

Profesor: Luis Javier Lopez Lopez

Parte Ejemplo Descripcion
Accion find, read, get, count, exists, delete Indica qué hace la consulta
Propiedad | Nombre, Edad, Apellido Corresponde al atributo de la

entidad
Operador Equals, Like, Between, GreaterThan, In, Define el tipo de comparacion
IsNull...
Conector And, Or Permite combinar condiciones

3.3 Operadores mas comunes

Operador

Descripcion

Ejemplo

Equivalente SQL

Equals (implicito)

Igualdad exacta

findByNombre(String n)

WHERE nombre = ?

Like Coincidencia findByNombreLike(String n) WHERE nombre LIKE ?
parcial
StartingWith Empieza con findByNombreStartingWith("4") WHERE nombre LIKE 'A%’
EndingWith Termina con findByNombreEndingWith("z") WHERE nombre LIKE "%z’
Containing Contiene findByNombreContaining("ar" WHERE nombre LIKE "%ar%'
GreaterThan, Comparaciones | findByEdadBetween(18,25) WHERE edad BETWEEN 18 AND
LessThan, Between numéricas o de 25
fechas
IsNull, IsNotNull Nulos findByApellidoIsNull() WHERE apellido IS NULL
In, NotIn Listas de valores | findByNombreln(List<String> WHERE nombre IN (...)
nombres)
OrderBy Ordenacion findByEdadGreaterThanOrderByN | ORDER BY nombre ASC

ombreAsc(int e)

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

3.4 Parametros y coincidencia

Los parametros del método se asignan automaticamente a los nombres y posiciones segun el orden en
el que aparecen.

Ejemplo:

List<Alumno> findAllByEdadGreaterThanAndApellidoEquals(int edad, String

apellido);

JPQL generado internamente:

SELECT a FROM Alumno a WHERE a.edad > ?1 AND a.apellido

3.5 Consultas con paginacion y ordenacion

Puedes combinar estos métodos con los tipos Pageable y Sort de Spring Data.

Paginacion y ordenacion:

Page<Alumno> findAllByEdadGreaterThan(int edad, Pageable pageable);

Uso:

Pageable pageable = PageRequest.of (0, 5, Sort.by("nombre").ascending());
Page<Alumno> pagina = repo.findAllByEdadGreaterThan(18, pageable);

Hibernate genera automaticamente la clausula LIMIT o FETCH FIRST segun el motor.

3.6 Contadores y verificadores

Spring Data JPA también genera consultas para contar o verificar existencia:

long countByEdadGreaterThan(int edad);

boolean existsByNombreAndApellido(String nombre, String apellido);

Esto se traduce a:

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

SELECT COUNT(*) FROM alumnos WHERE edad > ?;
SELECT CASE WHEN COUNT(*) > @ THEN true ELSE false END FROM alumnos
WHERE

3.7 Eliminaciones y actualizaciones automaticas

Para eliminar registros:

@Modifying
@Transactional

void deleteByEdadLessThan(int edad);

Importante:

e Las consultas DELETE y UPDATE deben ir con @Modifying y @Transactional.

e Hibernate las ejecuta directamente en la base de datos.

3.8 Navegacion por relaciones (joins implicitos)
Spring Data JPA interpreta las relaciones de entidad para consultas anidadas.

Ejemplo:

List<Alumno> findByCursoNombre(String nombreCurso);

JPQL generado:

SELECT a FROM Alumno a JOIN a.curso ¢ WHERE c.nombre = :nombreCurso

Sin escribir manualmente el JOIN.

3.9 Ejemplos practicos combinando operadores

// 1 Todos los alumnos de apellido "Pérez" y nombre que contiene "an"
List<Alumno> findAllByApellidoEqualsAndNombreContaining(String apellido, String nombre);

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

UTS5 - Conexion a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier Lopez Lopez

// 2 Alumnos entre 18 y 25 anos, ordenados por edad descendente
List<Alumno> findAllByEdadBetweenOrderByEdadDesc(int edadMin, int edadMax);

// 3 Verificar si existe algun alumno con cierto apellido
boolean existsByApellido(String apellido);

// 4 Eliminar los menores de edad
@Modifying

@Transactional

void deleteByEdadlLessThan(int edad);

3.10 Ventajas y desventajas

Ventajas Desventajas
No requiere escribir SQL ni JPQL Limitado a consultas relativamente simples
Totalmente tipado y validado en compilacién Los nombres largos pueden ser dificiles de leer
Muy rapido de implementar Menos control sobre el SQL generado
Compatible con paginacion, ordenacion y No ideal para consultas complejas o con
transacciones subconsultas

mailto:ljlopez@fundacionsafa.es

	Índice
	Introducción general
	1. Nativa (SQL puro)
	1.1 Contexto general
	1.2 Estructura básica de una consulta nativa
	1.3 Variantes de consultas nativas
	
	1.4 Consultas nativas que devuelven entidades
	1.5 Consultas nativas que devuelven campos específicos o DTOs
	Opción 2 — Devolver una proyección basada en interfaz

	1.6 Consultas de modificación nativas (UPDATE, DELETE, INSERT)
	1.7 Paginación y ordenación con consultas nativas
	
	1.8 Named Native Queries en combinación con Repositorios
	1.8 Resumiendo

	2. Consultas JPQL en Spring Data JPA
	2.1 Introducción a JPQL
	2.2. Sintaxis básica de JPQL
	2.3 Declaración en repositorios Spring Data JPA
	2.4 Uso de parámetros
	2.5 Proyecciones y selección parcial
	2.6 Consultas con joins y relaciones
	 2.7. Funciones y agregaciones
	2.8. Ordenación y paginación
	2.9 Buenas prácticas

	3. Consultas derivadas de métodos (Spring Data JPA / Hibernate)
	3.1 Introducción
	3.2 Estructura general del nombre de método
	3.3 Operadores más comunes
	3.4 Parámetros y coincidencia
	3.5 Consultas con paginación y ordenación
	3.6 Contadores y verificadores
	3.7 Eliminaciones y actualizaciones automáticas
	3.8 Navegación por relaciones (joins implícitos)
	3.9 Ejemplos prácticos combinando operadores
	3.10 Ventajas y desventajas
	

