
CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

Índice
Índice​ 1
Introducción general​ 2
1. Nativa (SQL puro)​ 3

1.1 Contexto general​ 3
1.2 Estructura básica de una consulta nativa​ 3
1.3 Variantes de consultas nativas​ 4
1.4 Consultas nativas que devuelven entidades​ 5
1.5 Consultas nativas que devuelven campos específicos o DTOs​ 5

Opción 2 — Devolver una proyección basada en interfaz​ 5
1.6 Consultas de modificación nativas (UPDATE, DELETE, INSERT)​ 7
1.7 Paginación y ordenación con consultas nativas​ 7
1.8 Named Native Queries en combinación con Repositorios​ 8
1.8 Resumiendo​ 8

2. Consultas JPQL en Spring Data JPA​ 9
2.1 Introducción a JPQL​ 9
2.2. Sintaxis básica de JPQL​ 9
2.3 Declaración en repositorios Spring Data JPA​ 10
2.4 Uso de parámetros​ 10
2.5 Proyecciones y selección parcial​ 10
2.6 Consultas con joins y relaciones​ 11
2.7. Funciones y agregaciones​ 12
2.8. Ordenación y paginación​ 12
2.9 Buenas prácticas​ 13

3. Consultas derivadas de métodos (Spring Data JPA / Hibernate)​ 14
3.1 Introducción​ 14
3.2 Estructura general del nombre de método​ 14
3.3 Operadores más comunes​ 15
3.4 Parámetros y coincidencia​ 16
3.5 Consultas con paginación y ordenación​ 16
3.6 Contadores y verificadores​ 16
3.7 Eliminaciones y actualizaciones automáticas​ 17
3.8 Navegación por relaciones (joins implícitos)​ 17
3.9 Ejemplos prácticos combinando operadores​ 17
3.10 Ventajas y desventajas​ 18

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

Introducción general

En las aplicaciones Java modernas que usan JPA (Java Persistence API) para el acceso a bases de
datos relacionales, una parte fundamental del trabajo consiste en realizar consultas sobre las
entidades del modelo.​
 Estas consultas permiten recuperar, filtrar, actualizar y eliminar información de forma flexible,
manteniendo la abstracción de la capa de persistencia.

JPA proporciona tres mecanismos principales para definir y ejecutar consultas, cada uno con sus
propias características, ventajas y usos recomendados:

Tipo de Consulta Sintaxis / Cómo se define Ventajas Desventajas Uso recomendado

Nativa (SQL
puro)

@Query(value = "SELECT
* FROM alumnos WHERE
edad > :edad",
nativeQuery = true)

Control total sobre el
SQL; permite funciones
específicas del motor;
compatible con consultas
preexistentes

Dependiente
del motor de
base de datos;
menos portable

Consultas complejas,
optimizadas o específicas
del motor

JPQL (Java
Persistence
Query Language)

@Query("SELECT a FROM
Alumno a WHERE a.edad
> :edad")

Portabilidad entre
motores; trabaja con
entidades y atributos;
integración total con
Hibernate

No todas las
funciones SQL
están
disponibles;
menos control
sobre
optimizaciones

Consultas normales sobre
entidades y relaciones

Consultas
derivadas de
métodos (Spring
Data JPA)

List<Alumno>
findAllByApellidoEqual
sAndNombreLike(String
apellido, String
nombre);

No requiere escribir SQL
o JPQL; muy rápido de
implementar; integrado
con repositorios

Limitado a lo
que permite la
convención de
nombres;
consultas
complejas
pueden ser
ilegibles

Consultas simples basadas
en atributos de la entidad,
filtros combinados y
operaciones comunes

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

1. Nativa (SQL puro)

1.1 Contexto general

En un proyecto que usa Spring Data JPA, cada entidad suele tener un repositorio asociado, por
ejemplo:

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {

}

Spring Data genera automáticamente los métodos básicos (findAll, save, delete, etc.), pero cuando
necesitas consultas personalizadas, puedes usar:

@Query("SELECT a FROM Alumno a WHERE a.edad > 18")

 Eso es JPQL (no SQL real).

Pero si necesitas ejecutar SQL nativo directamente sobre la base de datos, debes indicar a Spring
Data JPA que se trata de una consulta nativa con:

@Query(value = "SELECT * FROM alumnos WHERE edad > 18", nativeQuery =

true)

En ese caso, Hibernate (el proveedor JPA) ejecutará ese SQL directamente sobre la conexión actual
y mapeará el resultado a la entidad correspondiente o al tipo de retorno especificado.

1.2 Estructura básica de una consulta nativa

Ejemplo simple:

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {​
​
@Query(value = "SELECT * FROM alumnos WHERE edad > :edad", nativeQuery = true)​
 List<Alumno> findAlumnosMayores(@Param("edad") int edad);​
}

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

Explicación:

●​ value: contiene la consulta SQL real (no JPQL).​

●​ nativeQuery = true: le indica a Spring Data que la consulta es nativa.​

●​ @Param("edad"): vincula el parámetro del método con el del SQL.​

●​ El tipo de retorno (List<Alumno>) debe corresponder con la entidad o un tipo compatible.​

Hibernate internamente:

●​ Prepara y ejecuta el SQL directamente sobre la BD.​

●​ Usa su ResultSet interno para mapear el resultado a instancias de Alumno.​

●​ Respeta la transaccionalidad JPA de Spring.​

1.3 Variantes de consultas nativas

a) Parámetros nombrados

@Query(value = "SELECT * FROM alumnos WHERE apellido = :apellido",

nativeQuery = true)​
List<Alumno> findByApellido(@Param("apellido") String apellido);​

b) Parámetros posicionales

@Query(value = "SELECT * FROM alumnos WHERE edad > ?1", nativeQuery =

true)​
List<Alumno> findMayoresQue(int edad);

Hibernate los reemplaza de forma segura (sin riesgo de inyección SQL).

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

1.4 Consultas nativas que devuelven entidades

Cuando el SELECT devuelve todas las columnas que forman la entidad, Spring Data JPA puede
mapear automáticamente el resultado.

@Query(value = "SELECT * FROM alumnos WHERE edad >= :edad", nativeQuery

= true)​
List<Alumno> buscarMayoresDe(@Param("edad") int edad);

Importante:​
 El nombre de las columnas devueltas por el SQL debe coincidir con los nombres de columna
mapeados en la entidad (o con los @Column(name = "columna")).

1.5 Consultas nativas que devuelven campos específicos o DTOs

A veces no quieres devolver la entidad completa, sino solo ciertos campos.​
Para eso tienes tres opciones.

Opción 1 — Devolver List<Object[]>

@Query(value = "SELECT nombre, edad FROM alumnos WHERE edad > :edad",

nativeQuery = true)​
List<Object[]> findNombresYEdades(@Param("edad") int edad);

Uso:

for (Object[] fila : repo.findNombresYEdades(18)) {​
 String nombre = (String) fila[0];​
 int edad = ((Number) fila[1]).intValue();​
}

Opción 2 — Devolver una proyección basada en interfaz

public interface AlumnoResumen {​
 String getNombre();​
 int getEdad();​
}​

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

Y el repositorio:

@Query(value = "SELECT nombre, edad FROM alumnos WHERE edad > :edad",

nativeQuery = true)​
List<AlumnoResumen> findResumen(@Param("edad") int edad);

Hibernate mapeará automáticamente cada columna al método con el mismo nombre (por convención).​
Muy útil para reportes o consultas ligeras.

Opción 3 — Devolver un DTO explícito (Java record o clase)
Spring Data JPA no construye DTOs automáticamente en consultas nativas,​
 pero puedes usar @SqlResultSetMapping si necesitas hacerlo.

Por ejemplo:

@Entity​
@SqlResultSetMapping(​
 name = "AlumnoDTOMap",​
 classes = @ConstructorResult(​
 targetClass = AlumnoDTO.class,​
 columns = {​
 @ColumnResult(name = "nombre", type = String.class),​
 @ColumnResult(name = "edad", type = Integer.class)​
 }​
)​
)​
@NamedNativeQuery(​
 name = "Alumno.findResumen",​
 query = "SELECT nombre, edad FROM alumnos WHERE edad > :edad",​
 resultSetMapping = "AlumnoDTOMap"​
)​
public class Alumno {​
 @Id​
 private Long id;​
}

Y en el repositorio:

@Query(name = "Alumno.findResumen", nativeQuery = true)​
List<AlumnoDTO> findResumen(@Param("edad") int edad);

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

1.6 Consultas de modificación nativas (UPDATE, DELETE, INSERT)
Spring Data JPA también permite ejecutar sentencias nativas que modifican datos,​
 pero debes marcar el método con @Modifying y, si es necesario, @Transactional.

@Transactional​
@Modifying​
@Query(value = "UPDATE alumnos SET edad = edad + 1 WHERE edad <

:limite", nativeQuery = true)​
int incrementarEdad(@Param("limite") int limite);

●​ @Transactional: asegura que la operación esté dentro de una transacción.
●​ @Modifying: le indica a Spring que no es un SELECT, sino una operación de escritura.
●​ El método devuelve el número de filas afectadas.

1.7 Paginación y ordenación con consultas nativas
Spring Data permite combinar consultas nativas con Pageable y Sort, siempre que se proporcione un
countQuery para calcular el total.

@Query(​
 value = "SELECT * FROM alumnos WHERE edad >= :edad",​
 countQuery = "SELECT count(*) FROM alumnos WHERE edad >= :edad",​
 nativeQuery = true​
)​
Page<Alumno> findMayoresDe(@Param("edad") int edad, Pageable pageable);

Uso:

Pageable pageable = PageRequest.of(0, 10, Sort.by("edad").descending());​
Page<Alumno> pagina = repo.findMayoresDe(18, pageable);

Hibernate se encarga de ejecutar ambas consultas (SELECT y COUNT) y mapear los resultados.

1.8 Named Native Queries en combinación con Repositorios
Si defines consultas nativas con @NamedNativeQuery dentro de la entidad,​
 puedes invocarlas desde el repositorio sin escribir la consulta en la interfaz.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

@NamedNativeQuery(​
 name = "Alumno.buscarPorApellido",​
 query = "SELECT * FROM alumnos WHERE apellido = :apellido",​
 resultClass = Alumno.class​
)​
@Entity​
public class Alumno {​
 @Id​
 private Long id;​
}

Repositorio:

@Query(name = "Alumno.buscarPorApellido", nativeQuery = true)​
List<Alumno> findByApellido(@Param("apellido") String apellido);

1.8 Resumiendo

Concepto Descripción Ejemplo

nativeQuery = true Indica que la consulta usa SQL puro. @Query(value = "SELECT * FROM
alumnos", nativeQuery = true)

Parámetros Se vinculan con ?1, ?2 o :nombre. WHERE edad > :edad

Mapeo a entidad Si el SELECT devuelve todas las
columnas, se puede mapear directamente.

List<Alumno>

Proyección Puedes devolver Object[] o una interfaz
de proyección.

List<AlumnoResumen>

Actualización Usar @Modifying y @Transactional. UPDATE alumnos SET ...

Paginación Combinar con Pageable y countQuery. Page<Alumno>

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

2. Consultas JPQL en Spring Data JPA

2.1 Introducción a JPQL

JPQL (Java Persistence Query Language) es un lenguaje de consultas orientado a objetos, que
funciona sobre entidades y atributos de Java, en lugar de sobre tablas y columnas de la base de
datos.​
 Su sintaxis es similar a SQL, pero con diferencias importantes:

●​ Se usan nombres de clases y atributos, no nombres de tablas o columnas.​

●​ Devuelve objetos gestionados por JPA, no registros crudos.​

●​ Hibernate traduce JPQL a SQL nativo según el motor de base de datos usado.​

Ejemplo básico:

@Query("SELECT a FROM Alumno a WHERE a.edad > :edad")​
List<Alumno> findAlumnosMayores(@Param("edad") int edad);

2.2. Sintaxis básica de JPQL

●​ Selección de entidades completas

SELECT a FROM Alumno a

●​ Filtros con WHERE

SELECT a FROM Alumno a

●​ Ordenación

SELECT a FROM Alumno a ORDER BY a.nombre ASC

●​ Funciones agregadas

SELECT COUNT(a) FROM Alumno a WHERE a.edad > :edad

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

2.3 Declaración en repositorios Spring Data JPA
En Spring Data JPA, las consultas JPQL se definen con @Query, sin nativeQuery = true:

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {​
​
 @Query("SELECT a FROM Alumno a WHERE a.apellido = :apellido")​
 List<Alumno> findByApellido(@Param("apellido") String apellido);​
}

●​ JPQL trabaja con entidades y sus atributos, no columnas.​

●​ Hibernate genera automáticamente el SQL equivalente al motor de base de datos configurado.

2.4 Uso de parámetros

JPQL permite parámetros nombrados y posicionales:

a) Parámetros nombrados

@Query("SELECT a FROM Alumno a WHERE a.nombre LIKE :nombre")​
List<Alumno> findByNombreLike(@Param("nombre") String nombre);

●​ Más legible y flexible que los posicionales.

b) Parámetros posicionales

@Query("SELECT a FROM Alumno a WHERE a.edad > ?1")​
List<Alumno> findMayoresQue(int edad);

●​ Menos usado que los parámetros nombrados en Spring Data JPA.

2.5 Proyecciones y selección parcial

Si solo necesitamos ciertos atributos, JPQL permite crear proyecciones:

@Query("SELECT a.nombre, a.edad FROM Alumno a WHERE a.edad > :edad")​
List<Object[]> findNombresYEdades(@Param("edad") int edad);

●​ Cada elemento de la lista será un Object[] con las columnas seleccionadas.​

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

Usando DTOs con constructor

public class AlumnoDTO {​
 private String nombre;​
 private int edad;​
​
 public AlumnoDTO(String nombre, int edad) {​
 this.nombre = nombre;​
 this.edad = edad;​
 }​
}​
​
@Query("SELECT new com.ejemplo.dto.AlumnoDTO(a.nombre, a.edad) FROM

Alumno a WHERE a.edad > :edad")​
List<AlumnoDTO> findDTOByEdad(@Param("edad") int edad);

Ventaja: recibes objetos tipados directamente, evitando Object[].

2.6 Consultas con joins y relaciones
Si Alumno tiene una relación con Curso:

@Entity​
public class Alumno {​
 @Id​
 private Long id;​
​
 @ManyToOne​
 private Curso curso;​
}

JPQL permite hacer joins:

@Query("SELECT a FROM Alumno a JOIN a.curso c WHERE c.nombre = :curso")​
List<Alumno> findByCurso(@Param("curso") String nombreCurso);

●​ Hibernate traducirá el JOIN a SQL con la clave foránea correspondiente.​

●​ Se puede usar JOIN FETCH para evitar LazyInitializationException al cargar colecciones.​

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

 2.7. Funciones y agregaciones

●​ COUNT, SUM, AVG, MAX, MIN

@Query("SELECT COUNT(a) FROM Alumno a WHERE a.edad > :edad")​
long contarMayores(@Param("edad") int edad);

​
UPPER, LOWER, CONCAT, LENGTH

@Query("SELECT a FROM Alumno a WHERE UPPER(a.nombre) LIKE

:nombre")​
List<Alumno> findByNombreIgnoreCase(@Param("nombre") String

nombre);

2.8. Ordenación y paginación
Spring Data JPA permite combinar JPQL con Sort y Pageable:

@Query("SELECT a FROM Alumno a WHERE a.edad > :edad")​
Page<Alumno> findMayoresDe(@Param("edad") int edad, Pageable pageable);

Uso:

Pageable pageable = PageRequest.of(0, 10,

Sort.by("nombre").ascending());​
Page<Alumno> pagina = repo.findMayoresDe(18, pageable);

●​ Hibernate genera el LIMIT/OFFSET automáticamente según el motor.​

●​ El resultado es un Page<Alumno> que incluye total de elementos y total de páginas.​

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

2.9 Buenas prácticas

1.​ Usar parámetros nombrados siempre que sea posible.​

2.​ Usar DTOs con constructor para evitar retornar listas de Object[].​

3.​ Evitar consultas JPQL demasiado complejas; para eso podrían usar nativas.​

4.​ Recordar que JPQL trabaja con entidades gestionadas, por lo que modificaciones no necesitan
@Modifying.​

5.​ Para joins, usar JOIN FETCH si se quiere inicializar colecciones relacionadas en la misma
consulta.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

3. Consultas derivadas de métodos (Spring Data JPA / Hibernate)

3.1 Introducción
Spring Data JPA permite crear consultas automáticas simplemente definiendo el nombre del método
en la interfaz del repositorio.
​
No hace falta escribir SQL ni usar @Query:​
Spring analiza el nombre del método y genera la consulta JPQL correspondiente, que Hibernate luego
traduce a SQL nativo según el motor de base de datos.

Esto se conoce como Consultas derivadas de método (Derived Query Methods).

Ejemplo básico

public interface AlumnoRepository extends JpaRepository<Alumno, Long> {​
​
 List<Alumno> findAllByApellidoEqualsAndNombreLike(String apellido, String nombre);​
}

Spring Data JPA:

1.​ Analiza el nombre del método (findAllByApellidoEqualsAndNombreLike).​

Traduce automáticamente a JPQL:

 SELECT a FROM Alumno a WHERE a.apellido = :apellido AND a.nombre LIKE :nombre

2.​ Hibernate ejecuta el SQL equivalente sobre la base de datos.​

 Resultado: sin escribir ni una línea de SQL o JPQL.

3.2 Estructura general del nombre de método

El formato básico es:

<acción>By<Propiedad1><Operador1>[And|Or]<Propiedad2><Operador2>...

Donde:

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

Parte Ejemplo Descripción

Acción find, read, get, count, exists, delete Indica qué hace la consulta

Propiedad Nombre, Edad, Apellido Corresponde al atributo de la
entidad

Operador Equals, Like, Between, GreaterThan, In,
IsNull…

Define el tipo de comparación

Conector And, Or Permite combinar condiciones

3.3 Operadores más comunes

Operador Descripción Ejemplo Equivalente SQL

Equals (implícito) Igualdad exacta findByNombre(String n) WHERE nombre = ?

Like Coincidencia
parcial

findByNombreLike(String n) WHERE nombre LIKE ?

StartingWith Empieza con findByNombreStartingWith("A") WHERE nombre LIKE 'A%'

EndingWith Termina con findByNombreEndingWith("z") WHERE nombre LIKE '%z'

Containing Contiene findByNombreContaining("ar") WHERE nombre LIKE '%ar%'

GreaterThan,
LessThan, Between

Comparaciones
numéricas o de
fechas

findByEdadBetween(18,25) WHERE edad BETWEEN 18 AND
25

IsNull, IsNotNull Nulos findByApellidoIsNull() WHERE apellido IS NULL

In, NotIn Listas de valores findByNombreIn(List<String>
nombres)

WHERE nombre IN (...)

OrderBy Ordenación findByEdadGreaterThanOrderByN
ombreAsc(int e)

ORDER BY nombre ASC

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

3.4 Parámetros y coincidencia

Los parámetros del método se asignan automáticamente a los nombres y posiciones según el orden en
el que aparecen.

Ejemplo:

List<Alumno> findAllByEdadGreaterThanAndApellidoEquals(int edad, String

apellido);

JPQL generado internamente:

SELECT a FROM Alumno a WHERE a.edad > ?1 AND a.apellido = ?2

3.5 Consultas con paginación y ordenación
Puedes combinar estos métodos con los tipos Pageable y Sort de Spring Data.

Paginación y ordenación:

Page<Alumno> findAllByEdadGreaterThan(int edad, Pageable pageable);

Uso:

Pageable pageable = PageRequest.of(0, 5, Sort.by("nombre").ascending());​
Page<Alumno> pagina = repo.findAllByEdadGreaterThan(18, pageable);​

Hibernate genera automáticamente la cláusula LIMIT o FETCH FIRST según el motor.

3.6 Contadores y verificadores

Spring Data JPA también genera consultas para contar o verificar existencia:

long countByEdadGreaterThan(int edad);​
boolean existsByNombreAndApellido(String nombre, String apellido);

Esto se traduce a:

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

SELECT COUNT(*) FROM alumnos WHERE edad > ?;​
SELECT CASE WHEN COUNT(*) > 0 THEN true ELSE false END FROM alumnos

WHERE ...

3.7 Eliminaciones y actualizaciones automáticas

Para eliminar registros:

@Modifying​
@Transactional​
void deleteByEdadLessThan(int edad);

Importante:

●​ Las consultas DELETE y UPDATE deben ir con @Modifying y @Transactional.​

●​ Hibernate las ejecuta directamente en la base de datos.

3.8 Navegación por relaciones (joins implícitos)

Spring Data JPA interpreta las relaciones de entidad para consultas anidadas.

Ejemplo:

List<Alumno> findByCursoNombre(String nombreCurso);

JPQL generado:

SELECT a FROM Alumno a JOIN a.curso c WHERE c.nombre = :nombreCurso

Sin escribir manualmente el JOIN.

3.9 Ejemplos prácticos combinando operadores

// 1 Todos los alumnos de apellido "Pérez" y nombre que contiene "an"​
List<Alumno> findAllByApellidoEqualsAndNombreContaining(String apellido, String nombre);​

​

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SEÑORA DE LOS REYES
DEPARTAMENTO DE INFORMÁTICA.

UT5 - Conexión a base de datos objeto-relacionales usando Spring
Data JPA

Profesor: Luis Javier López López

// 2 Alumnos entre 18 y 25 años, ordenados por edad descendente​
List<Alumno> findAllByEdadBetweenOrderByEdadDesc(int edadMin, int edadMax);​
​
// 3 Verificar si existe algún alumno con cierto apellido​
boolean existsByApellido(String apellido);​
​
// 4 Eliminar los menores de edad​
@Modifying​
@Transactional​
void deleteByEdadLessThan(int edad);

3.10 Ventajas y desventajas

Ventajas Desventajas

No requiere escribir SQL ni JPQL Limitado a consultas relativamente simples

Totalmente tipado y validado en compilación Los nombres largos pueden ser difíciles de leer

Muy rápido de implementar Menos control sobre el SQL generado

Compatible con paginación, ordenación y
transacciones

No ideal para consultas complejas o con
subconsultas

mailto:ljlopez@fundacionsafa.es

	Índice
	Introducción general
	1. Nativa (SQL puro)
	1.1 Contexto general
	1.2 Estructura básica de una consulta nativa
	1.3 Variantes de consultas nativas
	
	1.4 Consultas nativas que devuelven entidades
	1.5 Consultas nativas que devuelven campos específicos o DTOs
	Opción 2 — Devolver una proyección basada en interfaz

	1.6 Consultas de modificación nativas (UPDATE, DELETE, INSERT)
	1.7 Paginación y ordenación con consultas nativas
	
	1.8 Named Native Queries en combinación con Repositorios
	1.8 Resumiendo

	2. Consultas JPQL en Spring Data JPA
	2.1 Introducción a JPQL
	2.2. Sintaxis básica de JPQL
	2.3 Declaración en repositorios Spring Data JPA
	2.4 Uso de parámetros
	2.5 Proyecciones y selección parcial
	2.6 Consultas con joins y relaciones
	 2.7. Funciones y agregaciones
	2.8. Ordenación y paginación
	2.9 Buenas prácticas

	3. Consultas derivadas de métodos (Spring Data JPA / Hibernate)
	3.1 Introducción
	3.2 Estructura general del nombre de método
	3.3 Operadores más comunes
	3.4 Parámetros y coincidencia
	3.5 Consultas con paginación y ordenación
	3.6 Contadores y verificadores
	3.7 Eliminaciones y actualizaciones automáticas
	3.8 Navegación por relaciones (joins implícitos)
	3.9 Ejemplos prácticos combinando operadores
	3.10 Ventajas y desventajas
	

