-
SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

Profesor: Luis Javier Lopez Lopez

ndice
indice
1. Introduccion: ;Qué es MapStruct y por qué usarlo?
Concepto
Ventajas
2. Requisitos técnicos
3. Configuracion del proyecto
3.1 Dependencias Maven
3.2 Configuracion H2 (application.properties)
4. Ejemplo base: Entidades y DTOs
4.1 Entidades
Customer.java
Product.java
Order.java
4.2 DTOs
CustomerDTO.java
ProductDTO.java
OrderDetailDTO.java
5. Mappers: desde basicos hasta avanzados
5.1 ProductMapper.java
5.2 OrderMapper.java
5.3 CustomerMapper.java
6. Servicios y controladores
6.1 Repositorios
6.2 Servicio
6.3 Controlador REST
7. Mapeos avanzados y técnicas profesionales
7.1 @Named + qualifiedByName
7.2 @AfterMapping
7.3 @BeforeMapping
7.4 uses = { Mapper.class }
7.5 @MappingTarget
7.6 defaultValue / ignore
8. Buenas practicas MapStruct + Spring Boot

O O & O 00 0 R X0 N 1 9 N N L i i N W W N DN DN -

e e e e T e T G S
S N N N N FE R e e)

mailto:ljlopez@fundacionsafa.es

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

Profesor: Luis Javier Lopez Lopez

1. Introduccion: ;Qué es MapStruct y por qué usarlo?

Concepto

MapStruct es una libreria de mapeo Java Bean a Java Bean que genera codigo de conversion en
tiempo de compilacion. Su funcidn principal es transformar objetos entre distintas capas, por ejemplo:

e Entidades JPA <> DTOs (Data Transfer Objects)
e Modelos de dominio < Objetos de vista

e Tipos complejos <> Representaciones simplificadas

Ventajas

e Rendimiento: el codigo se genera en compilacion, sin reflexion.
e Seguridad de tipo: los errores se detectan al compilar.
e Integracion nativa con Spring (componentModel = "spring").

e [egibilidad y mantenimiento: reduce cddigo repetitivo de mapeo manual.

2. Requisitos técnicos

Tecnologia Version recomendada

Java 17 o superior

Spring Boot 3x

MapStruct 1.6.15.Final
Lombok 1.18.30
Maven 3.8+

Base de datos | H2 (para pruebas)

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

3. Configuracion del proyecto

Estructura recomendada del proyecto

src/main/java/com/example/mapstructdemo/
— controller/

— dto/
F— entity/

— mapper/
F—— repository/

— service/

L— MapstructDemoApplication.java

3.1 Dependencias Maven

dependencies>

<!-- Spring Boot Core -->

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<!-- Spring Data JPA -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

<!-- H2 Database -->

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>

</dependency>

<l-- Lombok -->

<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.30</version>
<scope>provided</scope>

</dependency>

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

Profesor: Luis Javier Lopez Lopez

<!-- MapStruct -->

<dependency>
<groupId>org.mapstruct</groupId>
<artifactId>mapstruct</artifactId>
<version>1.6.15.Final</version>

</dependency>

<dependency>
<groupId>org.mapstruct</groupId>
<artifactId>mapstruct-processor</artifactId>
<version>1.6.15.Final</version>
<scope>provided</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version»3.10.1</version>
<configuration>
<source>17</source>
<target>17</target>
<annotationProcessorPaths>
<path>
<groupId>org.mapstruct</groupId>
<artifactId>mapstruct-processor</artifactId>
<version>1.6.15.Final</version>
</path>
<path>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.30</version>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
</plugins>
</build>

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

3.2 Configuracion H2 (application.properties)

spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=
spring.jpa.hibernate.ddl-auto=create-drop
spring.h2.console.enabled=true
spring.jpa.show-sql=true

4. Ejemplo base: Entidades y DTOs

Creamos un modelo sencillo con relaciones:
Un Customer puede tener varios Order, y cada Order se asocia a un Product.

4.1 Entidades

Customer.java

package com.example.mapstructdemo.entity;

import jakarta.persistence.¥*;
import lombok.Data;
import java.util.List;

@Entity

@Data

public class Customer {
@1d

@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private String name;
private String email;

@OneToMany(mappedBy = "customer")
private List<Order> orders;

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

Product.java

package com.example.mapstructdemo.entity;

import jakarta.persistence.*;
import lombok.Data;

@Entity

@Data

public class Product {
@1d
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private String name;
private Double price;

Order.java

package com.example.mapstructdemo.entity;

import jakarta.persistence.*;
import lombok.Data;

@Entity
@Data
@Table(name = "orders")
public class Order {
@1d
@GeneratedValue(strategy = GenerationType.IDENTITY)

private Long id;

private Double total;

@ManyToOne
private Customer customer;

@ManyToOne
private Product product;

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

4.2 DTOs

OrderSummaryDTO.java

package com.example.mapstructdemo.dto;
import lombok.Data;

@Data

public class OrderSummaryDTO {
private Long orderld;
private String productName;
private Double total;

CustomerDTO.java

package com.example.mapstructdemo.dto;
import lombok.Data;
import java.util.List;

@Data
public class CustomerDTO {
private Long id;
private String name;
private String email;
private List<OrderSummaryDTO> orders;

ProductDTO.java

package com.example.mapstructdemo.dto;
import lombok.Data;

@Data
public class ProductDTO {

private Long id;
private String name;
private Double price;

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

OrderDetailDTO.java

package com.example.mapstructdemo.dto;
import lombok.Data;

@Data

public class OrderDetailDTO {
private Long orderId;
private String customerName;
private String productName;
private Double total;

5. Mappers: desde basicos hasta avanzados

5.1 ProductMapper.java

package com.example.mapstructdemo.mapper;

import org.mapstruct.Mapper;
import com.example.mapstructdemo.dto.ProductDTO;
import com.example.mapstructdemo.entity.Product;

@Mapper (componentModel = "spring")

public interface ProductMapper {
ProductDTO toDTO(Product product);
Product toEntity(ProductDTO dto);

5.2 OrderMapper.java

package com.example.mapstructdemo.mapper;

import org.mapstruct.*;
import com.example.mapstructdemo.dto.*;
import com.example.mapstructdemo.entity.*;

@Mapper (componentModel = "spring", uses = ProductMapper
public interface OrderMapper {

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

@Mapping(source = "id", target = "orderId")
@Mapping(source "product.name", target = "productName")
@Mapping(source = "total", target = "total")
OorderSummaryDTO toSummaryDTO(Order order);

@Mapping(source = "id", target = "orderId")

@Mapping(source "customer.name", target = "customerName")
@Mapping(source "product.name", target = "productName")
OrderDetailDTO toDetailDTO(Order order);

5.3 CustomerMapper.java

package com.example.mapstructdemo.mapper;

import org.mapstruct.*;

import com.example.mapstructdemo.dto.*;
import com.example.mapstructdemo.entity.*;
import java.util.List;

@Mapper (componentModel = "spring", uses = { OrderMapper.class })
public interface CustomerMapper {

@Mapping(source = "orders", target = "orders")
CustomerDTO toDTO(Customer customer);

List<CustomerDTO> toDTOList(List<Customer> customers);

6. Servicios y controladores

6.1 Repositorios

public interface CustomerRepository extends JpaRepository<Customer,
Long> {}

public interface OrderRepository extends JpaRepository<Order, Long> {}
public interface ProductRepository extends JpaRepository<Product, Long>

{}

6.2 Servicio

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct
Profesor: Luis Javier Lopez Lopez

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

@Service
@RequiredArgsConstructor
public class CustomerService {

private final CustomerRepository customerRepository;
private final CustomerMapper customerMapper;

public List<CustomerDTO> getAll() {
return customerMapper.toDTOList(customerRepository.findAll());

public CustomerDTO getById(Long id) {
return customerRepository.findById(id)
.map(customerMapper: :toDTO)
.orElseThrow(() -> new RuntimeException("Customer not found"));

6.3 Controlador REST

@RestController
@RequestMapping("/api/customers")
@RequiredArgsConstructor

public class CustomerController {

private final CustomerService customerService;

@GetMapping

public List<CustomerDTO> getAll() {
return customerService.getAll();

@GetMapping("/{id}")
public CustomerDTO getById(@PathVariable Long id) {
return customerService.getById(id);

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

7. Mapeos avanzados y técnicas profesionales

Técnica Descripcion Ejemplo
@Named + qualifiedByName | Conversiones personalizadas | Fecha String — LocalDate
@AfterMapping Loégica post-mapeo Calcular priceWithTax
@BeforeMapping Normalizar datos antes de Limpiar espacios
mapear
uses = {Mapper.class} Reutilizar otros mappers Mappers modulares
@MappingTarget Modificar objeto destino Enriquecer DTO existente
defaultValue / ignore Controlar campos nulos o no | @Mapping(target=""1id", ignore=true)
usados

7.1 @Named + qualifiedByName

Objetivo:
Realizar conversiones personalizadas de tipos de datos no compatibles directamente, como String <
LocalDate, Integer <> Boolean, o conversiones con formatos especiales.

Coémo funciona:
e (@Named se usa para nombrar un método auxiliar de conversion.

e qualifiedByName se usa en un @Mapping para referirse a ese método concreto.

Ejemplo: convertir String < LocalDate

DTO y Entidad:

@Data
public class EmployeeDTO {
private Long id;
private String name;
private String birthDate; // "2025-11-19"

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

SAFA MapStruct

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

@Entity
@Data
public class Employee {
@Id
private Long id;
private String name;
private LocalDate birthDate;

Mapper:

@Mapper (componentModel = "spring")
public interface EmployeeMapper {

@Mapping(source = "birthDate", target "birthDate", qualifiedByName = "stringToLocalDate")
Employee toEntity(EmployeeDTO dto);

@Mapping(source = "birthDate", target = "birthDate", qualifiedByName = "localDateToString")
EmployeeDTO toDTO(Employee entity);

@Named("stringToLocalDate")

default LocalDate stringToLocalDate(String date) {
return date != null ? LocalDate.parse(date) : null;

@Named("localDateToString")
default String localDateToString(LocalDate date) {
return date != null ? date.toString() : null;

Resultado:

e MapStruct llama automaticamente al método anotado con @Named cuando usa
qualifiedByName.
e Permite reutilizar conversiones complejas en multiples mappers.

mailto:ljlopez@fundacionsafa.es

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

MapStruct

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

Profesor: Luis Javier Lopez Lopez

7.2 @AfterMapping

Objetivo:

Ejecutar logica posterior al mapeo automatico, cuando necesitas realizar calculos o asignar campos

derivados después de que MapStruct haya hecho su trabajo principal.

Coémo funciona:

e Se declara un método con @AfterMapping.

e Recibe el objeto de origen y el de destino mediante @MappingTarget.

o Puedes modificar el resultado final antes de devolverlo.

Ejemplo: calcular priceWithTax

@Data

public class Product {
private String name;
private Double price;

@Data

public class ProductDTO {
private String name;
private Double price;
private Double priceWithTax;

@Mapper (componentModel = "spring")
public interface ProductMapper {

ProductDTO toDTO(Product product);

@AfterMapping

default void addTax(Product product, @MappingTarget ProductDTO dto) {
dto.setPriceWithTax(product.getPrice() * 1.21); // 21% IVA

Resultado:
e priceWithTax se calcula automaticamente tras mapear.

e Util para afiadir campos derivados o calculados sin alterar la entidad base.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

7.3 @BeforeMapping

Objetivo:
Ejecutar logica antes del mapeo, generalmente para normalizar o limpiar datos antes de que
MapStruct los use.

Coémo funciona:
e I[gual que @AfterMapping, pero se ejecuta antes del proceso de mapeo.
e Ideal para limpiar cadenas, validar formatos, etc.

Ejemplo: normalizar texto

@Mapper (componentModel = "spring")
public interface UserMapper {

UserDTO toDTO(User user);

@BeforeMapping

default void trimFields(User user) {
if (user.getName() != null)
user.setName(user.getName().trim());
if (user.getEmail() != null)
user.setEmail(user.getEmail().toLowercCase());

Resultado:
e Sec asegura que los datos estan limpios y normalizados antes de convertirlos en DTO.
e Util cuando recibes datos desde formularios o sistemas externos.

7.4 uses = { Mapper.class }
Objetivo:
Permitir que un mapper use otros mappers auxiliares para delegar conversiones o submapeos.

Coémo funciona:

e Se declara con @Mapper(uses = {OtroMapper.class})
e MapStruct buscara métodos de conversion en esos mappers auxiliares.
e Ideal para modularizar y evitar duplicar 16gica de mapeo.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez
Ejemplo: usar un DateMapper dentro de OrderMapper

DateMapper.java

@Mapper (componentModel = "spring")
public interface DateMapper {
@Named("asString")
default String asString(LocalDate date) {
return date != null ? date.toString() : null;

@Named("asDate")
default LocalDate asDate(String date) {
return date != null ? LocalDate.parse(date) : null;

OrderMapper.java

@Mapper (componentModel = "spring", uses = { DateMapper.class })
public interface OrderMapper {

@Mapping(source = "orderDate", target "orderDate", qualifiedByName = "asString")
OrderDTO toDTO(Order order);

@Mapping(source = "orderDate", target "orderDate", qualifiedByName "asDate")
order toEntity(OrderDTO dto);

Resultado:

e OrderMapper reutiliza los métodos de DateMapper.
e Permite un disefio modular y facil de mantener.

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

7.5 @MappingTarget

Objetivo:
Modificar o actualizar un objeto destino existente en lugar de crear uno nuevo.
Ideal para operaciones tipo update, cuando quieres mapear un DTO sobre una entidad persistente
existente.
Coémo funciona:
e Se usa como parametro de un método de mapeo (@MappingTarget).
e MapStruct actualiza el objeto en lugar de instanciarlo.

Ejemplo: actualizar una entidad existente

@Mapper (componentModel = "spring")
public interface CustomerMapper {

void updateEntityFromDTO(CustomerDTO dto, @MappingTarget Customer entity);

Uso en servicio:

public Customer update(Long id, CustomerDTO dto) {
Customer entity = repository.findById(id).orElseThrow();

customerMapper .updateEntityFromDTO(dto, entity);
return repository.save(entity);

Resultado:
e Actualizas solo los campos del DTO, manteniendo el resto intactos (como id o relaciones
JPA).

e Muy util para endpoints PUT y PATCH.

7.6 defaultValue / ignore

Objetivo:
Controlar el mapeo de campos nulos o irrelevantes.

Como funciona:

e defaultValue asigna un valor si la fuente es null.
® ignore = true omite un campo en el mapeo (ni se copia ni se modifica).

mailto:ljlopez@fundacionsafa.es

CENTRO SAFA NUESTRA SENORA DE LOS REYES
DEPARTAMENTO DE INFORMATICA.

MapStruct

SAFA

ESCUELAS PROFESIONALES
SAGRADA FAMILIA

Profesor: Luis Javier Lopez Lopez

Ejemplo:

@Mapper (componentModel = "spring")
public interface OrderMapper {

@Mapping(target = "id", ignore = true)

@Mapping(target = "status", defaultValue = "PENDING")
Order toEntity(OrderDTO dto);

Resultado:
e id nunca se mapea (lo gestiona JPA).
e Sistatus es null en el DTO, se asigna "PENDING" por defecto.
e (Controlas exactamente qué campos se afectan durante la conversion.

8. Buenas practicas MapStruct + Spring Boot

—n

Usa siempre componentModel = "spring".

Define DTOs especificos por cada capa o contexto.

Separa mapeos complejos en mappers auxiliares (uses).

Evita logica de negocio en mappers, usa @AfterMapping solo para calculos simples.
Versiona los DTOs si tu API evoluciona (v1, v2, etc.).

Aprovecha List y Page mapeados automaticamente.

YYVVYVY

mailto:ljlopez@fundacionsafa.es

	Índice
	
	

	1. Introducción: ¿Qué es MapStruct y por qué usarlo?
	Concepto
	Ventajas

	2. Requisitos técnicos
	3. Configuración del proyecto
	3.1 Dependencias Maven
	
	3.2 Configuración H2 (application.properties)

	4. Ejemplo base: Entidades y DTOs
	4.1 Entidades
	Customer.java
	Product.java
	
	Order.java

	4.2 DTOs
	CustomerDTO.java
	ProductDTO.java
	OrderDetailDTO.java

	5. Mappers: desde básicos hasta avanzados
	5.1 ProductMapper.java
	5.2 OrderMapper.java
	5.3 CustomerMapper.java

	6. Servicios y controladores
	6.1 Repositorios
	6.2 Servicio
	6.3 Controlador REST
	

	
	7. Mapeos avanzados y técnicas profesionales
	7.1 @Named + qualifiedByName
	
	7.2 @AfterMapping
	7.3 @BeforeMapping
	7.4 uses = { Mapper.class }
	
	7.5 @MappingTarget
	
	7.6 defaultValue / ignore

	8. Buenas prácticas MapStruct + Spring Boot

