
CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

 

Índice 
Índice​ 1 
1. Introducción: ¿Qué es MapStruct y por qué usarlo?​ 2 

Concepto​ 2 
Ventajas​ 2 

2. Requisitos técnicos​ 2 
3. Configuración del proyecto​ 3 

3.1 Dependencias Maven​ 3 
3.2 Configuración H2 (application.properties)​ 5 

4. Ejemplo base: Entidades y DTOs​ 5 
4.1 Entidades​ 5 

Customer.java​ 5 
Product.java​ 6 
Order.java​ 6 

4.2 DTOs​ 7 
CustomerDTO.java​ 7 
ProductDTO.java​ 7 
OrderDetailDTO.java​ 8 

5. Mappers: desde básicos hasta avanzados​ 8 
5.1 ProductMapper.java​ 8 
5.2 OrderMapper.java​ 8 
5.3 CustomerMapper.java​ 9 

6. Servicios y controladores​ 9 
6.1 Repositorios​ 9 
6.2 Servicio​ 9 
6.3 Controlador REST​ 10 

7. Mapeos avanzados y técnicas profesionales​ 11 
7.1 @Named + qualifiedByName​ 11 
7.2 @AfterMapping​ 13 
7.3 @BeforeMapping​ 14 
7.4  uses = { Mapper.class }​ 14 
7.5 @MappingTarget​ 16 
7.6 defaultValue / ignore​ 16 

8. Buenas prácticas MapStruct + Spring Boot​ 17 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

 

1. Introducción: ¿Qué es MapStruct y por qué usarlo? 

Concepto 

MapStruct es una librería de mapeo Java Bean a Java Bean que genera código de conversión en 
tiempo de compilación. Su función principal es transformar objetos entre distintas capas, por ejemplo: 

●​ Entidades JPA ↔ DTOs (Data Transfer Objects)​
 

●​ Modelos de dominio ↔ Objetos de vista​
 

●​ Tipos complejos ↔ Representaciones simplificadas​
 

Ventajas 

●​ Rendimiento: el código se genera en compilación, sin reflexión.​
 

●​ Seguridad de tipo: los errores se detectan al compilar.​
 

●​ Integración nativa con Spring (componentModel = "spring").​
 

●​ Legibilidad y mantenimiento: reduce código repetitivo de mapeo manual.​
 

2. Requisitos técnicos 

Tecnología Versión recomendada 

Java 17 o superior 

Spring Boot 3.x 

MapStruct 1.6.15.Final 

Lombok 1.18.30 

Maven 3.8+ 

Base de datos H2 (para pruebas) 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

3. Configuración del proyecto 

Estructura recomendada del proyecto 

src/main/java/com/example/mapstructdemo/​
 ├── controller/​
 ├── dto/​
 ├── entity/​
 ├── mapper/​
 ├── repository/​
 ├── service/​
 └── MapstructDemoApplication.java 

3.1 Dependencias Maven 
 

dependencies>​
​
    <!-- Spring Boot Core -->​
    <dependency>​
        <groupId>org.springframework.boot</groupId>​
        <artifactId>spring-boot-starter-web</artifactId>​
    </dependency>​
​
    <!-- Spring Data JPA -->​
    <dependency>​
        <groupId>org.springframework.boot</groupId>​
        <artifactId>spring-boot-starter-data-jpa</artifactId>​
    </dependency>​
​
    <!-- H2 Database -->​
    <dependency>​
        <groupId>com.h2database</groupId>​
        <artifactId>h2</artifactId>​
        <scope>runtime</scope>​
    </dependency>​
​
    <!-- Lombok -->​
    <dependency>​
        <groupId>org.projectlombok</groupId>​
        <artifactId>lombok</artifactId>​
        <version>1.18.30</version>​
        <scope>provided</scope>​
    </dependency>​

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

​
    <!-- MapStruct -->​
    <dependency>​
        <groupId>org.mapstruct</groupId>​
        <artifactId>mapstruct</artifactId>​
        <version>1.6.15.Final</version>​
    </dependency>​
​
    <dependency>​
        <groupId>org.mapstruct</groupId>​
        <artifactId>mapstruct-processor</artifactId>​
        <version>1.6.15.Final</version>​
        <scope>provided</scope>​
    </dependency>​
​
</dependencies>​
​
<build>​
    <plugins>​
        <plugin>​
            <groupId>org.apache.maven.plugins</groupId>​
            <artifactId>maven-compiler-plugin</artifactId>​
            <version>3.10.1</version>​
            <configuration>​
                <source>17</source>​
                <target>17</target>​
                <annotationProcessorPaths>​
                    <path>​
                        <groupId>org.mapstruct</groupId>​
                        <artifactId>mapstruct-processor</artifactId>​
                        <version>1.6.15.Final</version>​
                    </path>​
                    <path>​
                        <groupId>org.projectlombok</groupId>​
                        <artifactId>lombok</artifactId>​
                        <version>1.18.30</version>​
                    </path>​
                </annotationProcessorPaths>​
            </configuration>​
        </plugin>​
    </plugins>​
</build> 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

 

3.2 Configuración H2 (application.properties) 
 

spring.datasource.url=jdbc:h2:mem:testdb​
spring.datasource.driverClassName=org.h2.Driver​
spring.datasource.username=sa​
spring.datasource.password=​
spring.jpa.hibernate.ddl-auto=create-drop​
spring.h2.console.enabled=true​
spring.jpa.show-sql=true 

 

4. Ejemplo base: Entidades y DTOs 
Creamos un modelo sencillo con relaciones:​
Un Customer puede tener varios Order, y cada Order se asocia a un Product. 

4.1 Entidades 

Customer.java 

package com.example.mapstructdemo.entity;​
​
import jakarta.persistence.*;​
import lombok.Data;​
import java.util.List;​
​
@Entity​
@Data​
public class Customer {​
    @Id​
    @GeneratedValue(strategy = GenerationType.IDENTITY)​
    private Long id;​
​
    private String name;​
    private String email;​
​
    @OneToMany(mappedBy = "customer")​
    private List<Order> orders;​
} 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

Product.java 
 

package com.example.mapstructdemo.entity;​
​
import jakarta.persistence.*;​
import lombok.Data;​
​
@Entity​
@Data​
public class Product {​
    @Id​
    @GeneratedValue(strategy = GenerationType.IDENTITY)​
    private Long id;​
​
    private String name;​
    private Double price;​
} 

 

Order.java 
 

package com.example.mapstructdemo.entity;​
​
import jakarta.persistence.*;​
import lombok.Data;​
​
@Entity​
@Data​
@Table(name = "orders")​
public class Order {​
    @Id​
    @GeneratedValue(strategy = GenerationType.IDENTITY)​
    private Long id;​
​
    private Double total;​
​
    @ManyToOne​
    private Customer customer;​
​
    @ManyToOne​
    private Product product;​
} 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

4.2 DTOs 

OrderSummaryDTO.java 

package com.example.mapstructdemo.dto;​
​
import lombok.Data;​
​
@Data​
public class OrderSummaryDTO {​
    private Long orderId;​
    private String productName;​
    private Double total;​
} 

CustomerDTO.java 
 

package com.example.mapstructdemo.dto;​
import lombok.Data;​
import java.util.List;​
​
@Data​
public class CustomerDTO {​
    private Long id;​
    private String name;​
    private String email;​
    private List<OrderSummaryDTO> orders;​
} 

 

ProductDTO.java 
 

package com.example.mapstructdemo.dto;​
import lombok.Data;​
​
@Data​
public class ProductDTO {​
    private Long id;​
    private String name;​
    private Double price;​
} 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

OrderDetailDTO.java 
 

package com.example.mapstructdemo.dto;​
import lombok.Data;​
​
@Data​
public class OrderDetailDTO {​
    private Long orderId;​
    private String customerName;​
    private String productName;​
    private Double total;​
} 

 

5. Mappers: desde básicos hasta avanzados 

5.1 ProductMapper.java 
 

package com.example.mapstructdemo.mapper;​
​
import org.mapstruct.Mapper;​
import com.example.mapstructdemo.dto.ProductDTO;​
import com.example.mapstructdemo.entity.Product;​
​
@Mapper(componentModel = "spring")​
public interface ProductMapper {​
    ProductDTO toDTO(Product product);​
    Product toEntity(ProductDTO dto);​
} 

5.2 OrderMapper.java 
 

package com.example.mapstructdemo.mapper;​
​
import org.mapstruct.*;​
import com.example.mapstructdemo.dto.*;​
import com.example.mapstructdemo.entity.*;​
​
@Mapper(componentModel = "spring", uses = ProductMapper.class)​
public interface OrderMapper {​

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

​
    @Mapping(source = "id", target = "orderId")​
    @Mapping(source = "product.name", target = "productName")​
    @Mapping(source = "total", target = "total")​
    OrderSummaryDTO toSummaryDTO(Order order);​
​
    @Mapping(source = "id", target = "orderId")​
    @Mapping(source = "customer.name", target = "customerName")​
    @Mapping(source = "product.name", target = "productName")​
    OrderDetailDTO toDetailDTO(Order order);​
} 

5.3 CustomerMapper.java 
 

package com.example.mapstructdemo.mapper;​
​
import org.mapstruct.*;​
import com.example.mapstructdemo.dto.*;​
import com.example.mapstructdemo.entity.*;​
import java.util.List;​
​
@Mapper(componentModel = "spring", uses = { OrderMapper.class })​
public interface CustomerMapper {​
​
    @Mapping(source = "orders", target = "orders")​
    CustomerDTO toDTO(Customer customer);​
​
    List<CustomerDTO> toDTOList(List<Customer> customers);​
} 

6. Servicios y controladores 

6.1 Repositorios 

public interface CustomerRepository extends JpaRepository<Customer, 

Long> {}​
public interface OrderRepository extends JpaRepository<Order, Long> {}​
public interface ProductRepository extends JpaRepository<Product, Long> 

{} 

6.2 Servicio 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

@Service​
@RequiredArgsConstructor​
public class CustomerService {​
​
    private final CustomerRepository customerRepository;​
    private final CustomerMapper customerMapper;​
​
    public List<CustomerDTO> getAll() {​
        return customerMapper.toDTOList(customerRepository.findAll());​
    }​
​
    public CustomerDTO getById(Long id) {​
        return customerRepository.findById(id)​
                .map(customerMapper::toDTO)​
                .orElseThrow(() -> new RuntimeException("Customer not found")); 

 

6.3 Controlador REST 
 

@RestController​
@RequestMapping("/api/customers")​
@RequiredArgsConstructor​
public class CustomerController {​
​
    private final CustomerService customerService;​
​
    @GetMapping​
    public List<CustomerDTO> getAll() {​
        return customerService.getAll();​
    }​
​
    @GetMapping("/{id}")​
    public CustomerDTO getById(@PathVariable Long id) {​
        return customerService.getById(id);​
    }​
} 

 

 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

7. Mapeos avanzados y técnicas profesionales 
 

Técnica Descripción Ejemplo 

@Named + qualifiedByName Conversiones personalizadas Fecha String → LocalDate 

@AfterMapping Lógica post-mapeo Calcular priceWithTax 

@BeforeMapping Normalizar datos antes de 
mapear 

Limpiar espacios 

uses = {Mapper.class} Reutilizar otros mappers Mappers modulares 

@MappingTarget Modificar objeto destino Enriquecer DTO existente 

defaultValue / ignore Controlar campos nulos o no 
usados 

@Mapping(target="id", ignore=true) 

7.1 @Named + qualifiedByName 
Objetivo: 
Realizar conversiones personalizadas de tipos de datos no compatibles directamente, como String ↔ 
LocalDate, Integer ↔ Boolean, o conversiones con formatos especiales. 
 
Cómo funciona: 

●​ @Named se usa para nombrar un método auxiliar de conversión.​
 

●​ qualifiedByName se usa en un @Mapping para referirse a ese método concreto.​
 

Ejemplo: convertir String ↔ LocalDate 

DTO y Entidad: 

@Data​
public class EmployeeDTO {​
    private Long id;​
    private String name;​
    private String birthDate; // "2025-11-19"​
}​
 

 

​

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

@Entity​
@Data​
public class Employee {​
    @Id​
    private Long id;​
    private String name;​
    private LocalDate birthDate;​
}​
​
 

 

Mapper: 

@Mapper(componentModel = "spring")​
public interface EmployeeMapper {​
​
    @Mapping(source = "birthDate", target = "birthDate", qualifiedByName = "stringToLocalDate")​
    Employee toEntity(EmployeeDTO dto);​
​
    @Mapping(source = "birthDate", target = "birthDate", qualifiedByName = "localDateToString")​
    EmployeeDTO toDTO(Employee entity);​
​
    @Named("stringToLocalDate")​
    default LocalDate stringToLocalDate(String date) {​
        return date != null ? LocalDate.parse(date) : null;​
    }​
​
    @Named("localDateToString")​
    default String localDateToString(LocalDate date) {​
        return date != null ? date.toString() : null;​
    }​
} 

 
Resultado: 
 

●​ MapStruct llama automáticamente al método anotado con @Named cuando usa 
qualifiedByName. 

●​ Permite reutilizar conversiones complejas en múltiples mappers.​
 

 
 
 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

7.2 @AfterMapping 
Objetivo: 
Ejecutar lógica posterior al mapeo automático, cuando necesitas realizar cálculos o asignar campos 
derivados después de que MapStruct haya hecho su trabajo principal. 

 
Cómo funciona: 
 

●​ Se declara un método con @AfterMapping.​
 

●​ Recibe el objeto de origen y el de destino mediante @MappingTarget.​
 

●​ Puedes modificar el resultado final antes de devolverlo.​
 

Ejemplo: calcular priceWithTax 
 

@Data​
public class Product {​
    private String name;​
    private Double price;​
}​
​
@Data​
public class ProductDTO {​
    private String name;​
    private Double price;​
    private Double priceWithTax;​
}​
​
@Mapper(componentModel = "spring")​
public interface ProductMapper {​
​
    ProductDTO toDTO(Product product);​
​
    @AfterMapping​
    default void addTax(Product product, @MappingTarget ProductDTO dto) {​
        dto.setPriceWithTax(product.getPrice() * 1.21); // 21% IVA​
    }​
} 

 
Resultado: 

●​ priceWithTax se calcula automáticamente tras mapear. 
●​ Útil para añadir campos derivados o calculados sin alterar la entidad base.​

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

7.3 @BeforeMapping 
Objetivo: 
Ejecutar lógica antes del mapeo, generalmente para normalizar o limpiar datos antes de que 
MapStruct los use. 
 
Cómo funciona: 

●​ Igual que @AfterMapping, pero se ejecuta antes del proceso de mapeo. 
●​ Ideal para limpiar cadenas, validar formatos, etc.​

 
Ejemplo: normalizar texto 
 

@Mapper(componentModel = "spring")​
public interface UserMapper {​
​
    UserDTO toDTO(User user);​
​
    @BeforeMapping​
    default void trimFields(User user) {​
        if (user.getName() != null)​
            user.setName(user.getName().trim());​
        if (user.getEmail() != null)​
            user.setEmail(user.getEmail().toLowerCase());​
    }​
} 

 
Resultado: 

●​ Se asegura que los datos están limpios y normalizados antes de convertirlos en DTO. 
●​ Útil cuando recibes datos desde formularios o sistemas externos.​

 

7.4  uses = { Mapper.class } 
Objetivo: 
Permitir que un mapper use otros mappers auxiliares para delegar conversiones o submapeos. 
 
Cómo funciona: 
 

●​ Se declara con @Mapper(uses = {OtroMapper.class}) 
●​ MapStruct buscará métodos de conversión en esos mappers auxiliares. 
●​ Ideal para modularizar y evitar duplicar lógica de mapeo.​

 

 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

Ejemplo: usar un DateMapper dentro de OrderMapper 

DateMapper.java 

@Mapper(componentModel = "spring")​
public interface DateMapper {​
    @Named("asString")​
    default String asString(LocalDate date) {​
        return date != null ? date.toString() : null;​
    }​
​
    @Named("asDate")​
    default LocalDate asDate(String date) {​
        return date != null ? LocalDate.parse(date) : null;​
    }​
} 

OrderMapper.java 

@Mapper(componentModel = "spring", uses = { DateMapper.class })​
public interface OrderMapper {​
​
    @Mapping(source = "orderDate", target = "orderDate", qualifiedByName = "asString")​
    OrderDTO toDTO(Order order);​
​
    @Mapping(source = "orderDate", target = "orderDate", qualifiedByName = "asDate")​
    Order toEntity(OrderDTO dto);​
} 

 
Resultado: 
 

●​ OrderMapper reutiliza los métodos de DateMapper. 
●​ Permite un diseño modular y fácil de mantener.​

 

 
 
 
 
 
 
 
 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

7.5 @MappingTarget 
Objetivo: 
Modificar o actualizar un objeto destino existente en lugar de crear uno nuevo.​
Ideal para operaciones tipo update, cuando quieres mapear un DTO sobre una entidad persistente 
existente. 
Cómo funciona: 

●​ Se usa como parámetro de un método de mapeo (@MappingTarget). 
●​ MapStruct actualiza el objeto en lugar de instanciarlo.​

 
Ejemplo: actualizar una entidad existente 
 

@Mapper(componentModel = "spring")​
public interface CustomerMapper {​
​
    void updateEntityFromDTO(CustomerDTO dto, @MappingTarget Customer entity);​
} 

 

Uso en servicio: 

public Customer update(Long id, CustomerDTO dto) {​
    Customer entity = repository.findById(id).orElseThrow();​
    customerMapper.updateEntityFromDTO(dto, entity);​
    return repository.save(entity);​
} 

 
Resultado: 

●​ Actualizas solo los campos del DTO, manteniendo el resto intactos (como id o relaciones 
JPA). 

●​ Muy útil para endpoints PUT y PATCH.​
 

 

7.6 defaultValue / ignore 
Objetivo: 
Controlar el mapeo de campos nulos o irrelevantes. 
 
Cómo funciona: 
 

●​ defaultValue asigna un valor si la fuente es null. 
●​ ignore = true omite un campo en el mapeo (ni se copia ni se modifica). 

 

mailto:ljlopez@fundacionsafa.es


CENTRO SAFA NUESTRA SEÑORA DE LOS REYES 
DEPARTAMENTO DE INFORMÁTICA. 

MapStruct 
Profesor:  Luis Javier López López

 

Ejemplo: 
 

@Mapper(componentModel = "spring")​
public interface OrderMapper {​
​
    @Mapping(target = "id", ignore = true)​
    @Mapping(target = "status", defaultValue = "PENDING")​
    Order toEntity(OrderDTO dto);​
} 

 
Resultado: 

●​ id nunca se mapea (lo gestiona JPA). 
●​ Si status es null en el DTO, se asigna "PENDING" por defecto. 
●​ Controlas exactamente qué campos se afectan durante la conversión. 

 

8. Buenas prácticas MapStruct + Spring Boot 
➢​ Usa siempre componentModel = "spring". 
➢​ Define DTOs específicos por cada capa o contexto. 
➢​ Separa mapeos complejos en mappers auxiliares (uses). 
➢​ Evita lógica de negocio en mappers, usa @AfterMapping solo para cálculos simples. 
➢​ Versiona los DTOs si tu API evoluciona (v1, v2, etc.). 
➢​ Aprovecha List y Page mapeados automáticamente. 

mailto:ljlopez@fundacionsafa.es

	Índice 
	 
	 

	1. Introducción: ¿Qué es MapStruct y por qué usarlo? 
	Concepto 
	Ventajas 

	2. Requisitos técnicos 
	3. Configuración del proyecto 
	3.1 Dependencias Maven 
	 
	3.2 Configuración H2 (application.properties) 

	4. Ejemplo base: Entidades y DTOs 
	4.1 Entidades 
	Customer.java 
	Product.java 
	 
	Order.java 

	4.2 DTOs 
	CustomerDTO.java 
	ProductDTO.java 
	OrderDetailDTO.java 


	5. Mappers: desde básicos hasta avanzados 
	5.1 ProductMapper.java 
	5.2 OrderMapper.java 
	5.3 CustomerMapper.java 

	6. Servicios y controladores 
	6.1 Repositorios 
	6.2 Servicio 
	6.3 Controlador REST 
	 

	 
	7. Mapeos avanzados y técnicas profesionales 
	7.1 @Named + qualifiedByName 
	 
	7.2 @AfterMapping 
	7.3 @BeforeMapping 
	7.4  uses = { Mapper.class } 
	 
	7.5 @MappingTarget 
	 
	7.6 defaultValue / ignore 

	8. Buenas prácticas MapStruct + Spring Boot 

