
 ​ ​ TUTORIALES
​ ​ ​ SEGURIDAD, CONTROL DE ACCESO Y ROLES DE USUARIO

​ ​ ​

Introducción

En cualquier aplicación web profesional, la seguridad y el control de acceso son
fundamentales. No basta con mostrar u ocultar elementos visuales: hay que asegurarse de
que el servidor restrinja el acceso a rutas, datos y funcionalidades según el tipo de
usuario (rol) y su estado de autenticación.

Django incluye un sistema robusto de autenticación y autorización que permite:

●​ Verificar si un usuario está logueado.​

●​ Asignar roles o permisos.​

●​ Proteger vistas y rutas.​

●​ Mostrar u ocultar contenido dinámico en función del rol.​

●​ Gestionar errores de forma controlada y profesional.​

Estos conceptos se aplican a lo largo de todo el desarrollo backend y frontend del proyecto.

1. Control de Acceso a Rutas y Vistas

¿Qué significa restringir una ruta?

Es limitar el acceso a ciertas páginas solo a determinados usuarios, por ejemplo:

●​ Que solo usuarios logueados puedan acceder al panel de usuario.​

●​ Que solo administradores puedan entrar al panel de administración.​

 ​ ​ TUTORIALES
​ ​ ​ SEGURIDAD, CONTROL DE ACCESO Y ROLES DE USUARIO

​ ​ ​
1.1 Usuarios Logueados: @login_required

Decorador que asegura que una vista solo sea accesible por usuarios autenticados.

from django.contrib.auth.decorators import login_required​
​
@login_required​
def panel_usuario(request):​
 return render(request, 'usuario/panel.html')​

🔒 Si el usuario no está logueado, es redirigido al LOGIN_URL definido en settings.py.

1.2 Control por Rol: @user_passes_test

Permite filtrar el acceso según una condición específica, como el rol del usuario.

from django.contrib.auth.decorators import user_passes_test​
​
def es_admin(user):​
 return user.is_authenticated and user.role == 'admin'​
​
@user_passes_test(es_admin)​
def vista_admin(request):​
 return render(request, 'admin/panel.html')

✅ Este decorador se usa cuando no es suficiente con estar logueado, sino que además se
requiere un perfil concreto (admin, profesor, alumno, etc.).

 ​ ​ TUTORIALES
​ ​ ​ SEGURIDAD, CONTROL DE ACCESO Y ROLES DE USUARIO

​ ​ ​

2. Mostrar u Ocultar Elementos en Plantillas según el
Usuario

2.1 Saber si el usuario está autenticado

{% if user.is_authenticated %}​
 <p>Hola {{ user.username }}</p>​
{% else %}​
 Iniciar sesión​
{% endif %}

2.2 Mostrar contenido solo a ciertos roles

{% if user.role == 'admin' %}​
 Administración​
{% endif %}

Importante: esto solo afecta al contenido visual. Nunca debe sustituir el control en la vista.

3. Páginas Genéricas de Error
Django permite definir vistas personalizadas para manejar errores como:

●​ 403 (prohibido)​

●​ 404 (no encontrado)​

●​ 500 (error interno)​

 ​ ​ TUTORIALES
​ ​ ​ SEGURIDAD, CONTROL DE ACCESO Y ROLES DE USUARIO

​ ​ ​
3.1 Configuración en settings.py

LOGIN_URL = '/login/' # Redirección automática si no está logueado​
​
Páginas de error​
handler403 = 'mi_app.views.error_403'​
handler404 = 'mi_app.views.error_404'​
handler500 = 'mi_app.views.error_500'

3.2 Crear vistas de error en views.py

def error_403(request, exception=None):​
 return render(request, 'errores/403.html', status=403)

Y su correspondiente template:

<!-- templates/errores/403.html>

​
<h1>403 - Acceso denegado</h1>​
<p>No tienes permisos para ver esta página.</p>

4. Buenas Prácticas
●​ Siempre protege tus vistas desde el backend.​

●​ Usa decoradores y mixins según el tipo de vista.​

●​ No confíes solo en el frontend para ocultar contenido.​

●​ Gestiona errores con páginas profesionales.​

●​ Mantén centralizada la lógica de roles si es posible (funciones reutilizables o

middleware).

 ​ ​ TUTORIALES
​ ​ ​ SEGURIDAD, CONTROL DE ACCESO Y ROLES DE USUARIO

​ ​ ​

Recomendación Avanzada
Para una lógica más potente y flexible puedes explorar estas librerías:

Librería Función principal

django-rules Permisos personalizados con funciones

django-guardian Permisos a nivel de objeto

	Introducción
	
	1. Control de Acceso a Rutas y Vistas
	1.1 Usuarios Logueados: @login_required
	1.2 Control por Rol: @user_passes_test

	
	2. Mostrar u Ocultar Elementos en Plantillas según el Usuario
	2.1 Saber si el usuario está autenticado
	
	2.2 Mostrar contenido solo a ciertos roles
	

	3. Páginas Genéricas de Error
	
	
	3.1 Configuración en settings.py
	3.2 Crear vistas de error en views.py

	4. Buenas Prácticas
	Recomendación Avanzada

